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APPROXIMATE DIFFERENTIAL FADDEEV-TYPE
EQUATIONS FOR SYSTEMS OF ONE LIGHT AND TWO
HEAVY PARTICLES

V.V.Pupyshev

Three-particle integro-differential equations are explored. The double-
sum-representation of nonlocal operators is obtained. It is shown,
that nonlocal operators may be approximate by the sum of local one,
if the system consists of one light and two heavy particles. After such
approximation original equations are reduced to approximate partial
differential one.

The investigation has been performed at the Laboratory of Theore-
tical Physics, JINR.

[pubnmxennsie nuddepeHunansHbie ypaBHeHHs
tanneeBckoro THna IIA CHCTEM
H3 OIHOM JIErKOM M ABYX TAXKEBIX YaCTHI]

B.B.Ilynenues

Hccnenyiorca nHTerponuddepeHimanbibie ypaBHeHMA s CHCTe-
MBI Tpex YacTHH. [t HENIOKATBHBIX ONEPaTOpOB NONYYEHO IIPe/ICTaB-
JIeHHe B BHOe IBYXKpaTHbIX cymM. [lokazaHo, wro mns cucreM H3
O/THOH JIErKOH H ABYX TAKEJIBIX YACTHI| TaKHe ONEPATOPh MOTYT GhITH
aNMPOKCHMHPOBAHbl CYMMOH JIOK&IBHBIX oOnepatopoB. Hcxommsie
YPAaBHCHHA HOC/E TaKO# ANNPOKCHMALME CBOAATCA K HpHOIHMKEHHBIM
ArddepeHIMANLHEIM Y PaBHEHUSAM B YaCTHBIX TPOH3BOIHBIX.

Pa6opa Brinomiena B JlaGoparopuu Teopetnueckoit pusmcn OUAH.

Now the theory of three nonrelativistic interacting particles is
mtens/w?ly developed in the framework of integro-differential equa-
tions' "' . They are obtained "%’ from the system of equations

k7 i
by decomposing of searched Faddeev components ¥. in a series

2 aL -1 JL ,~ A 2
Wi(x"yi) —a=(}/:\.8).L q)i (xi'yi)(xiyi) Y, (yi'xi)‘ )

over bispherical harmomcs Y (y, x) Here 'Y =(0, ,¢, ) are sphen-
cal angles of vector 8 in a ﬁxed Cartezian coordinate system S = 161. 2
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P g} . Different sets (i# k) of relative Jacobi coordinates are connec-
ted with each other by the unitary transformation
X 1 —exit8yny Xy

Xy
(= )=-c09yki ( ) (

- ). 3
Yx €xi UBYki 1 i @

Kinematical angles y,; €[0,7/2] are determined only by the ra-
tios of particle masses

2 .
%8 vy =ij/mimk=mj/mi+mj/mk+(mjc/mi)(mjz/mk)- 4)

and numbers ¢y; are such that ¢,; =-¢;,, =1, (ik) =(12), (31), (23).
After substitution of components (2) into equations (1) and projec-
tion on the bispherical basis, the system (1) is reduced to a system
of mtegro-dlfferentlal equations for partial components Q“ . If the
two-body potentials are central, then such a system is wntten in the
following form /1. 2/

a al ~L
(A} -E +V, (x)}®] (x,.9,) = V,(x, )1”‘2:i . <X,y |hap- |

1 > 128 a0 0),a%00), A4 T - g

=L=ats 0, 80207 498 -t at oA 1)/
Matrix elements of h -operators in the right-hand side of equations
(5) are determined as integrals

”~ ~ L* ~ ~ ~ ~ ’
xy f[dxdy Y, (¥, x)Yal? (y ’.x')®“k L(x’.y’)/(x’y’). (6)

Here and further, when it is possible, indices i and X are omitted
and, instead of the latter, the upper prime is used. Let us now obtain
a representation more convenient for our investlgatlon of system (5),
and more compact than the known one’!’, for h -operators. We de-
note a plane going through three particles by symbcl P and introduce
the new coordinate system

S'=r0" -é, -’”- 3>, =

’ 2>,
195 8y 8.8, € P, 8

-

tt X,

The original system S is obtained by rotation of the new system S’.
This rotation is determined by Euler angles « = lwg ,~0, 7¢ 1 where
@, is the angle of the first rotation around es axis, upon which vector 32
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gets coincident with the normal to the £ plane. The arguments mar-
ked by primes in formulae (6) are functions (3) of independent variab-
les p=(x2+92)% & _ arctg(y/x), u = cos (X y). This allows us
to express bispherical harmonics in integrals (6) by a linear combina-
tion of D “(w)-Wigner functions’¢/ and bispherical harmonics written
in the new system S’ to replace the variables d x dy = dw duand to in-
tegrate over Euler angles. As a final result, matrix element (6) is writ-
ten as the one-dimensional integral

2, 1 rd
<®ylig, 10" Xy bk (giu )0t xny), (@)
-1

where

L L IAeIA I e ]

Boa” (& 0, ey) = T(g, ¢°)- oL o1 '
s otV LN A -NIA=m)!1(€’-N +m)! l%
my AL O N T e m) 1027 N = )1

N m | n
"By (0)Py (u, )Py (u,, 1), ' (8)
here

(al=-(aa+1)*, J(4,4")=sin2¢/28m2¢g".

and all arguments ¢, u,,= cos (% B) are functions (3) of variables
¢.u and parameter ¢y . The representation of h operators thus obtai-
ned is more convenient and compact than that usually used’!’. The
latter is written as a five-index-sum containing 6j and 9j symbols.

System (5) in the polar coordinates is written in the following form

L - ’
i -E+v,x)107 0, 8,1V, (x, ).fia’<¢i|n;,|¢i “e.gy)>, (9

whereA‘:,,aP2+P-laP+ ”'2(";‘!: _ l(l;l) _ :\(:\;1) ), and x, =
= p 08¢, . Matrix elements o8 "y sin® ¢,
~L a’L d(¢’y) L 'L. )
.<¢lhaa' le (P ’¢')>= r d¢’hm,(¢,¢l 95)")¢ak‘ (P1¢ :)’ (10)
cdy) ’



where

h;‘a,(¢,¢',ey)="(2coseczy/J)h;‘a,(¢,u(¢,¢',ey-),ey), (11)
and the integral limits are equal to

(¢, y)=ld-yl, d(¢,y)=minlg+y,m-¢-yl, 12)

are obtained/3/ by replacement u- ¢° in corresponding integrals
(7). The presence of nonlocal operators (10-12) in the system (9) es-
sentially complicates both its numerical solution and the investigation
of analytical properties of unknown partial components. Consequently,
the study of these operators is an actual problem. ‘

Let us show that operators h may be approximated by a sum
of local operators if the particle masses and functions are subjected "
to well-defined constraints. First, we explore the mapping (10-12)
in two limits y » 0, and y» n/2 . The kernels (8), (11) of operators
h are regular functions of parameter y €{0,7/2] according to defi-
nition (6). Using equalities (3), (6) and known parity properties of
bispherical harmonics’4/, we obtain from formulae (6-8) limit forms
of equalities (10)

~L a’L i aa’L a’lL
<Plhgy [Py (> =8, (d,ey)®, (p,&),
where

é= ¢, g?,a L(</>,osy)=(—1))MZ 8ga’» if y =0,

‘L A+l
E=n/2-¢, g‘:’a (Prey) =(-¢) N a)t'ﬂ’ if y=mn/2.

Consequently, if y= 0, or y=n/2 ,then operators h are local. If y tends
to zero, then both limits (12) of integral (10) tend uniformly to ¢,
and the length of the integral interval is equal to 0(y) . If a partial
angular derivative of order m (we denote it by (™ ®% 5,6 ) is con-
tinuous everywhere, then, decomposing the partial component in the
integrand of (10), in a Taylor series at the centre ¢, we obtain the
equality :
~L a’l m aa’ ’

<Blig 19, (pp> - T 6, ")V oL (g er . (13)
The functions 8%* L represent matrix elements <¢|h;‘af|(¢’—¢ )%>/nt
which can be easily calculated by equalities (8), (10-12). From the
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latter equalities it follows that the g“,f"l‘ function is of an order of
O(y"/(n + 1)1) , and the remaining term ry~0(y™),

As an example, we cite functions g:‘“ L in thecase a =a’= (0,0),
e =1,L=0:

l—(1—2¢/y‘)n+1 , ¢ €[0,y]
g(;ao (b,y) = y"+lcosec2y/(n+1)!
1+(-1)", ¢ € ly,n/4l.

These functions have parity (-1)" with respect to point ¢ =7/4, Odd
functions are not equal to zero only on subintervals (0, y) and(n/2 —y
#/2) . The lengths of the above intervals approach zero as O(y) when
¥+0. If the particle masses are such that 8%=m /my<< 1, My~ my,
then kinematical angles are equal to Y3 =0+O0(B),y, , ¥y = /2 +
0O(B) according to definition (4). Therefore, approximation (13) of
nonlocal operators h by a sum of local operators, i.e., by operators
d3 with weght-multipliers g2@'L _0(8") is kinematically feasible
when a three-particle system consists of one light and two heavy pat-
ticles. The class of such systems is sufficiently wide; it includes meso-
molecular (dd; ) , atomic (eipp) systems, systems consisting of one
nucleon and two heavy nuclei, and so on. Equations (9) are reduced
to partial differential equations by approximation (13). It is necessary
to point out, that approximation (13) does not change a free three-
particle Hamiltonian in contrast to the well-known Born-Oppenhei-
mer method’5”, Moreover, approximation (13) is a geometrical appro-
ximation only over the angle variables. A small parameter 8 = (ml/mz)%

of approximation (13) has a kinematical nature and does not depend
both an the total energy of a three-patricle system and on the shape
of two-body interactions. The existence and uniqueness of the solu-
tion of equations (9) have been proved‘/l’/ under the assumptionv(b‘iz Le
C—Cz, therefore the rank m of approximation (13) obeys in equality
m2 2,

The determination of maximal possible rank m of approxima-
tion (13) depending on the shape of potentials requires further investi-
gations. The most interesting application of approximate equations,
in my opinion, is an investigation of local anaIytic properties (first of all,
the asymptotical behaviour in a vicinity of point p = 0) of partial compo-
nents. Such investigations seem impossible in the framework of origi-
nal exact integro-differential equations (9). .

In conclusion, we briefly summarize main results of the present
work. On the basis of the obtained representation (8) for kernels of
operators h it is shown that these operators are reduced to the local
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ones in the limits y -0,y » #/2, Such situation is realised for systems
consisting of one light and two heavy particles. For such systems integ-
ro-differential equations may' be replaced by approximate partial dif-
ferential equations.
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